3.398 \(\int \cot ^2(e+f x) (1+\tan (e+f x))^{3/2} \, dx\)

Optimal. Leaf size=178 \[ \frac{\sqrt{\sqrt{2}-1} \tan ^{-1}\left (\frac{\left (1-\sqrt{2}\right ) \tan (e+f x)-2 \sqrt{2}+3}{\sqrt{2 \left (5 \sqrt{2}-7\right )} \sqrt{\tan (e+f x)+1}}\right )}{f}-\frac{3 \tanh ^{-1}\left (\sqrt{\tan (e+f x)+1}\right )}{f}+\frac{\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{\left (1+\sqrt{2}\right ) \tan (e+f x)+2 \sqrt{2}+3}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{\tan (e+f x)+1}}\right )}{f}-\frac{\sqrt{\tan (e+f x)+1} \cot (e+f x)}{f} \]

[Out]

(Sqrt[-1 + Sqrt[2]]*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Tan[e + f*x])/(Sqrt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + Tan
[e + f*x]])])/f - (3*ArcTanh[Sqrt[1 + Tan[e + f*x]]])/f + (Sqrt[1 + Sqrt[2]]*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqr
t[2])*Tan[e + f*x])/(Sqrt[2*(7 + 5*Sqrt[2])]*Sqrt[1 + Tan[e + f*x]])])/f - (Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]
])/f

________________________________________________________________________________________

Rubi [A]  time = 0.304952, antiderivative size = 178, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.429, Rules used = {3567, 3654, 12, 3536, 3535, 203, 207, 3634, 63} \[ \frac{\sqrt{\sqrt{2}-1} \tan ^{-1}\left (\frac{\left (1-\sqrt{2}\right ) \tan (e+f x)-2 \sqrt{2}+3}{\sqrt{2 \left (5 \sqrt{2}-7\right )} \sqrt{\tan (e+f x)+1}}\right )}{f}-\frac{3 \tanh ^{-1}\left (\sqrt{\tan (e+f x)+1}\right )}{f}+\frac{\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{\left (1+\sqrt{2}\right ) \tan (e+f x)+2 \sqrt{2}+3}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{\tan (e+f x)+1}}\right )}{f}-\frac{\sqrt{\tan (e+f x)+1} \cot (e+f x)}{f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2*(1 + Tan[e + f*x])^(3/2),x]

[Out]

(Sqrt[-1 + Sqrt[2]]*ArcTan[(3 - 2*Sqrt[2] + (1 - Sqrt[2])*Tan[e + f*x])/(Sqrt[2*(-7 + 5*Sqrt[2])]*Sqrt[1 + Tan
[e + f*x]])])/f - (3*ArcTanh[Sqrt[1 + Tan[e + f*x]]])/f + (Sqrt[1 + Sqrt[2]]*ArcTanh[(3 + 2*Sqrt[2] + (1 + Sqr
t[2])*Tan[e + f*x])/(Sqrt[2*(7 + 5*Sqrt[2])]*Sqrt[1 + Tan[e + f*x]])])/f - (Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]
])/f

Rule 3567

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[((b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[
1/((m + 1)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[a*c^2*(m + 1) + a*
d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[e
 + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m]

Rule 3654

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*ta
n[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*x])^n*Simp[a*(A - C) - (A*b - b*
C)*Tan[e + f*x], x], x], x] + Dist[(A*b^2 + a^2*C)/(a^2 + b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^
2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3536

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> With[{q =
 Rt[a^2 + b^2, 2]}, Dist[1/(2*q), Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*
x]], x], x] - Dist[1/(2*q), Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]], x
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ[2
*a*c*d - b*(c^2 - d^2), 0] && (PerfectSquareQ[a^2 + b^2] || RationalQ[a, b, c, d])

Rule 3535

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*
d^2)/f, Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]
]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[2
*a*c*d - b*(c^2 - d^2), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rubi steps

\begin{align*} \int \cot ^2(e+f x) (1+\tan (e+f x))^{3/2} \, dx &=-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}-\int \frac{\cot (e+f x) \left (-\frac{3}{2}+\frac{1}{2} \tan ^2(e+f x)\right )}{\sqrt{1+\tan (e+f x)}} \, dx\\ &=-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}+\frac{3}{2} \int \frac{\cot (e+f x) \left (1+\tan ^2(e+f x)\right )}{\sqrt{1+\tan (e+f x)}} \, dx-\int \frac{2 \tan (e+f x)}{\sqrt{1+\tan (e+f x)}} \, dx\\ &=-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}-2 \int \frac{\tan (e+f x)}{\sqrt{1+\tan (e+f x)}} \, dx+\frac{3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{1+x}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}+\frac{\int \frac{1+\left (-1-\sqrt{2}\right ) \tan (e+f x)}{\sqrt{1+\tan (e+f x)}} \, dx}{\sqrt{2}}-\frac{\int \frac{1+\left (-1+\sqrt{2}\right ) \tan (e+f x)}{\sqrt{1+\tan (e+f x)}} \, dx}{\sqrt{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,\sqrt{1+\tan (e+f x)}\right )}{f}\\ &=-\frac{3 \tanh ^{-1}\left (\sqrt{1+\tan (e+f x)}\right )}{f}-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}-\frac{\left (4-3 \sqrt{2}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \left (-1+\sqrt{2}\right )-4 \left (-1+\sqrt{2}\right )^2+x^2} \, dx,x,\frac{1-2 \left (-1+\sqrt{2}\right )-\left (-1+\sqrt{2}\right ) \tan (e+f x)}{\sqrt{1+\tan (e+f x)}}\right )}{f}-\frac{\left (4+3 \sqrt{2}\right ) \operatorname{Subst}\left (\int \frac{1}{2 \left (-1-\sqrt{2}\right )-4 \left (-1-\sqrt{2}\right )^2+x^2} \, dx,x,\frac{1-2 \left (-1-\sqrt{2}\right )-\left (-1-\sqrt{2}\right ) \tan (e+f x)}{\sqrt{1+\tan (e+f x)}}\right )}{f}\\ &=\frac{\sqrt{-1+\sqrt{2}} \tan ^{-1}\left (\frac{3-2 \sqrt{2}+\left (1-\sqrt{2}\right ) \tan (e+f x)}{\sqrt{2 \left (-7+5 \sqrt{2}\right )} \sqrt{1+\tan (e+f x)}}\right )}{f}-\frac{3 \tanh ^{-1}\left (\sqrt{1+\tan (e+f x)}\right )}{f}+\frac{\sqrt{1+\sqrt{2}} \tanh ^{-1}\left (\frac{3+2 \sqrt{2}+\left (1+\sqrt{2}\right ) \tan (e+f x)}{\sqrt{2 \left (7+5 \sqrt{2}\right )} \sqrt{1+\tan (e+f x)}}\right )}{f}-\frac{\cot (e+f x) \sqrt{1+\tan (e+f x)}}{f}\\ \end{align*}

Mathematica [C]  time = 0.193796, size = 100, normalized size = 0.56 \[ \frac{-3 \tanh ^{-1}\left (\sqrt{\tan (e+f x)+1}\right )+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{\tan (e+f x)+1}}{\sqrt{1-i}}\right )}{\sqrt{1-i}}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{\tan (e+f x)+1}}{\sqrt{1+i}}\right )}{\sqrt{1+i}}-\sqrt{\tan (e+f x)+1} \cot (e+f x)}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2*(1 + Tan[e + f*x])^(3/2),x]

[Out]

(-3*ArcTanh[Sqrt[1 + Tan[e + f*x]]] + (2*ArcTanh[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 - I]])/Sqrt[1 - I] + (2*ArcTanh
[Sqrt[1 + Tan[e + f*x]]/Sqrt[1 + I]])/Sqrt[1 + I] - Cot[e + f*x]*Sqrt[1 + Tan[e + f*x]])/f

________________________________________________________________________________________

Maple [C]  time = 0.506, size = 6655, normalized size = 37.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2*(1+tan(f*x+e))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\tan \left (f x + e\right ) + 1\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((tan(f*x + e) + 1)^(3/2)*cot(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.08369, size = 3260, normalized size = 18.31 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/8*(8^(1/4)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(2*f*cos(f*x + e)^2 + sqrt(2)*(f^3*cos(f*x + e)^2 - f^3)*sq
rt(f^(-4)) - 2*f)*(f^(-4))^(1/4)*log(2*(2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 8^(1/4)*(sqrt(2)*f^3*sqrt(f^
(-4))*cos(f*x + e) + f*cos(f*x + e))*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x + e) + sin(f*x + e))/
cos(f*x + e))*(f^(-4))^(1/4) + 2*cos(f*x + e) + 2*sin(f*x + e))/cos(f*x + e)) - 8^(1/4)*sqrt(-2*sqrt(2)*f^2*sq
rt(f^(-4)) + 4)*(2*f*cos(f*x + e)^2 + sqrt(2)*(f^3*cos(f*x + e)^2 - f^3)*sqrt(f^(-4)) - 2*f)*(f^(-4))^(1/4)*lo
g(2*(2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) - 8^(1/4)*(sqrt(2)*f^3*sqrt(f^(-4))*cos(f*x + e) + f*cos(f*x + e)
)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(1/4) + 2*co
s(f*x + e) + 2*sin(f*x + e))/cos(f*x + e)) + 8*sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e))*cos(f*x + e)*s
in(f*x + e) - 12*(cos(f*x + e)^2 - 1)*log(sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e)) + 1) + 12*(cos(f*x
+ e)^2 - 1)*log(sqrt((cos(f*x + e) + sin(f*x + e))/cos(f*x + e)) - 1) + 4*8^(1/4)*sqrt(2)*(f^5*cos(f*x + e)^2
- f^5)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(-4))^(1/4)*arctan(1/16*8^(3/4)*sqrt(2)*(2*f^5*sqrt(f^(-4)) +
sqrt(2)*f^3)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) + 8^(1/4)*(sq
rt(2)*f^3*sqrt(f^(-4))*cos(f*x + e) + f*cos(f*x + e))*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x + e)
 + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(1/4) + 2*cos(f*x + e) + 2*sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4)
- 1/8*8^(3/4)*(2*f^5*sqrt(f^(-4)) + sqrt(2)*f^3)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x + e) + si
n(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4) - f^2*sqrt(f^(-4)) - sqrt(2))/f^4 + 4*8^(1/4)*sqrt(2)*(f^5*cos(f*x +
e)^2 - f^5)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*(f^(-4))^(1/4)*arctan(1/16*8^(3/4)*sqrt(2)*(2*f^5*sqrt(f^(-4
)) + sqrt(2)*f^3)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((2*sqrt(2)*f^2*sqrt(f^(-4))*cos(f*x + e) - 8^(1/4
)*(sqrt(2)*f^3*sqrt(f^(-4))*cos(f*x + e) + f*cos(f*x + e))*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x
 + e) + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(1/4) + 2*cos(f*x + e) + 2*sin(f*x + e))/cos(f*x + e))*(f^(-4))^(
3/4) - 1/8*8^(3/4)*(2*f^5*sqrt(f^(-4)) + sqrt(2)*f^3)*sqrt(-2*sqrt(2)*f^2*sqrt(f^(-4)) + 4)*sqrt((cos(f*x + e)
 + sin(f*x + e))/cos(f*x + e))*(f^(-4))^(3/4) + f^2*sqrt(f^(-4)) + sqrt(2))/f^4)/(f*cos(f*x + e)^2 - f)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (\tan{\left (e + f x \right )} + 1\right )^{\frac{3}{2}} \cot ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2*(1+tan(f*x+e))**(3/2),x)

[Out]

Integral((tan(e + f*x) + 1)**(3/2)*cot(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (\tan \left (f x + e\right ) + 1\right )}^{\frac{3}{2}} \cot \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(1+tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((tan(f*x + e) + 1)^(3/2)*cot(f*x + e)^2, x)